Selasa, 05 November 2013

pengantar peluang


Pengertian Peluang

Peluang semata-mata adalah suatu cara untuk menyatakan kesempatan terjadinya suatu peristiwa. Secara kualitatif peluang dapat dinyatakan dalam bentuk kata sifat untuk menunjukkan kemungkinan terjadinya suatu keadaan seperti “baik”, “lemah”, “kuat”, “miskin”, “sedikit” dan lain sebagainya. Secara kuantitatif, peluang dinyatakan sebagai nilai-nilai numeris baik dalam bentuk pecahan maupun desimal antara 0 dan 1. Peluang sama dengan 0 berarti sebuah peristiwa tidak bisa terjadi sedangkan peluang sama dengan 1 berarti peristiwa tersebut pasti terjadi.
Dalam kehidupan sehari-hari kita sering mendengar perkiraan terjadinya hujan dalam bentuk peluang baik secara kualitatif seperti “kemungkinannya kecil akan terjadi hujan esok hari”, atau dalam bentuk kuantitatif seperti “kemungkinan hujan esok hari sekitar 30%”. Jelas di sini bahwa berbicara mengenai peluang kita dihadapkan dalam suatu kondisi yang tidak pasti, akan tetapi kita hanya diberikan suatu petunjuk atau gambaran seberapa besar keyakinan kita bahwa suatu peristiwa bisa terjadi. Semakin besar nilai peluang yang dihasilkan dari suatu perhitungan maka semakin besar keyakinan kita bahwa peristiwa itu akan terjadi. Dewasa ini, perkiraan tentang akan terjadinya suatu gejala alam bukanlah sesuatu pekerjaan sederhana akan tetapi telah melalui suatu proses perhitungan yang sangat kompleks. Gejala sebuah peristiwa tidak hanya dikaji dari satu sisi saja, misalnya pengaruh waktu, akan tetapi juga melibatkan banyak variabel yang terkait dengan peristiwa tersebut.  Olehkarena itu peluang yang didasarkan pada latar belakang ilmiah bisa memberikan tingkat keyakinan yang lebih tinggi bagi orang yang memerlukannya.
Salah satu cara untuk menyatakan peluang dari suatu peristiwa adalah penggunaan diagram Venn seperti yang dilukiskan dalam gambar 1.  Meski konvensional, tetapi cara ini ternyata lebih mudah dipahami oleh masyarakat luas khususnya bagi orang-orang yang bukan berlatar belakang matematika. Diagram Venn berbentuk persegi panjang untuk menyatakan semua peristiwa yang bisa terjadi dan lingkaran untuk menggambarkan peluang terjadinya peristiwa tertentu. Pengambaran diagram umumnya tidak menggunakan skala yang sesungguhnya, artinya jika peluang terjadi peristiwa hujan 30% bukan berarti bahwa lingkaran yang dimaksud luasnya harus 30% dari luas persegi panjang.



Peristiwa

           
Istilah peristiwa yang kita kenal sehari-hari seringkali agak berbeda makna  jika kita berbicara tentang teori peluang. Biasanya orang berpikir bahwa peristiwa adalah suatu kejadian layaknya peristiwa sejarah, gejala-gejala fisik, pesta dan lain sebagainya. Dalam statistika, pengertian ini diperluas dengan memasukkan unsur-unsur kesempatan atau peluang atas terjadinya suatu peristiwa yang didasarkan pada hasil sebuah percobaan atau eksperimen yang dilakukan secara berulang-ulang. Sebagai contoh peristiwa terambilnya kartu As dari setumpuk kartu bridge, jumlah cairan yang disaring dari mesin pengisi, jumlah kendaraan niaga yang melalui jalan protokol, jumlah barang yang cacat dalam satu lot, dan karakteristik lainnya yang secara umum tidak dapat disebutkan sebagai peristiwa. 
            Untuk keperluan penentuan peluang ada gunanya untuk membagi peristiwa ke dalam dua jenis peristiwa yakni peristiwa sederhana dan peristiwa majemuk. Peristiwa sederhana tidak dapat dibagi lebih lanjut lagi ke dalam komponen-komponen peristiwa, sedangkan peritiwa majemuk selalu memiliki dua atau lebih komponen peristiwa sederhana. Peristiwa “Kartu Sekop” secara definisi adalah peristiwa sederhana karena hanya ada satu jenis kartu sekop dalam setumpuk kartu bridge. Akan tetapi peristiwa “As Sekop” dapat dianggap sebagai peristiwa majemuk karena kartunya haruslah berisikan keduanya yakni kartu As dan kartu Sekop.  Namun definisi ini tergantung dari pandangan si pelaku percobaan. Bisa saja seseorang mengatakan bahwa As Sekop sebagai suatu peristiwa sederhana jika dia mengganggap hal ini sebagai suatu kesatuan. Pembagian jenis peristiwa ini dimaksudkan untuk kemudahan dalam mempelajari teori peluang selanjutnya

Peluang disebut juga dengan nilai kemungkinan.
Contoh :
Pada percobaan melempar sebuah dadu bermata 6, pada ruang sampelnya terdapat sebanyak 6 titik sampel, yaitu munculnya sisi dadu bermata 1, 2, 3, 4, 5, dan 6.
Kejadian-kejadian yang mungkin terjadi misalnya :
  • Munculnya mata dadu ganjil
  • Munculnya mata dadu genap
  • Munculnya mata dadu prima

Jika pada percobaan tersebut diinginkan  kejadian munculnya mata dadu prima, maka mata dadu yang diharapkan adalah munculnya mata dadu 2, 3, dan 5, atau sebanyak 3 titik sampel. Sedang banyaknya ruang sampel adalah 6, maka peluang kejadian munculnya mata dadu prima adalah
P (Mata dadu prima) = banyak kejadian yang mungkin
                                banyak kejadian mata dadu prima
                                 = 3 / 6
                                 = 1/2
Atau:
Menyatakan nilai peluang suatu kejadian pada  suatu percobaan dapat dinyatakan dengan menggunakan cara :






Contoh:

Pada percobaan melempar sebuah koin bersisi angka (A) dan gambar (G) dengan sebuah dadu bermata 1 sampai 6 bersama-sama sebanyak satu kali. Berapa peluang munculnya pasangan koin sisi gambar dan dadu mata ganjil ?
http://genius.smpn1-mgl.sch.id/file.php/1/ANIMASI/matematika/Teori%20Peluang/images/hal14.jpg
Banyaknya kejadian munculnya pasangan gambar dan mata dadu ganjil ada 3, yaitu (G,1), (G,3) dan (G,5). Peluang kejadian munculnya pasangan gambar dan mata dadu ganjil adalah

P(Gambar dan ganjil) = n (gambar dan ganjil)
                                       n (s)
                                 = 3/12
                                 = 1/4


Batas-Batas Nilai Peluang  
Nilai peluang suatu kejadian (P) memenuhi sifat 0 < p < 1, yang berarti Jika P = 0, maka kejadian tersebut tidak pernah terjadi atau suatu kemustahilan .Jika P = 1, maka kejadian tersebut merupakan kepastian.
Jika A adalah suatu kejadian yang terjadi, dan A’ adalah suatu kejadian dimana A tidak terjadi, maka :

http://genius.smpn1-mgl.sch.id/file.php/1/ANIMASI/matematika/Teori%20Peluang/images/rumus15b.jpg
Contoh:

1. Sebuah dadu berbentuk mata enam dilempar sekali. Tentukan nilai peluang :
    a. munculnya mata dadu bilangan asli
    b. munculnya mata dadu 7
    Jawab :
    a.  Nilai peluang munculnya mata dadu bilangan asli adalah 1, karena merupakan suatu kepastian.
    b.  Nilai peluang munculnya mata dadu 7 adalah 0, karena merupakan suatu kemustahilan
2. Dua buah dadu kubus homogen bermata enam dilempar bersama-sama     sebanyak satu kali. Berapakah peluang munculnya mata dadu tidak     berjumlah 12 ?
Jawab :
    Banyaknya ruang sampel percobaan tersebut ada 36 kejadian, sedang kejadian muncul mata     dadu berjumlah 12 ada 1 kejadian yaitu (6,6), sehingga :
  p (mata dadu berjumlah 12) =  1 - p (bermata dadu 12)
                                             = 1 - 1/36
                                             = 35 / 36

Referensi:











Tidak ada komentar:

Posting Komentar